Lecture 7 2018/2019 Microwave Devices and Circuits for Radiocommunications

2018/2019

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course + laboratory)
- Lectures- associate professor Radu Damian
 - Friday 09-11, II.13
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - 3p=+0.5p
 - <u>all materials/equipments authorized</u>
- Laboratory associate professor Radu Damian
 - Wednesday 12-14, II.12 odd weeks
 - L 25% final grade
 - P 25% final grade

Materials

http://rf-opto.etti.tuiasi.ro

🔹 Laborator	vrul de Microunde si Op: × +	
\leftrightarrow \rightarrow G	Not secure rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0	☆ B
	Main <u>Courses</u> Master Staff Research Students Admin	
	Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational software	
	Microwave Devices and Circuits for Radiocommunications (English)	
	Course: MDCR (2017-2018)	
	Course Coordinator: Assoc.P. Dr. Radu-Florin Damian Code: EDOS412T Discipline Type: DOS; Alternative, Specialty Credits: 4 Enrollment Year: 4, Sem. 7	
	Activities	
	Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:	
	Evaluation	
	Type: Examen	
	A: 50%, (Test/Colloquium) B: 25%, (Seminary/Laboratory/Project Activity) D: 25%, (Homework/Specialty papers)	
	Grades	
	Aggregate Results	
	Attendance	
	<u>Course</u> Laboratory	
	Lists	
	Bonus-uri acumulate (final) Studenti care nu pot intra in examen	
	Materials	
	Course Slides	

<u>MDCR Lecture 1</u> (pdf, 5.43 MB, en, **as**) <u>MDCR Lecture 2</u> (pdf, 3.67 MB, en, **as**) <u>MDCR Lecture 3</u> (pdf, 4.76 MB, en, **as**) MDCR Lecture 4 (pdf, 5.58 MB, en, **as**)

Examen: Logarithmic scales

$dB = 10 \cdot \log_{10} (P_2 / P_1)$		dBm = 10 • log	dBm = 10 • log ₁₀ (P / 1 mW)	
o dB	= 1	o dBm	= 1 mW	
+ 0.1 dB + 3 dB + 5 dB + 10 dB	= 1.023 (+2.3%) = 2 = 3 = 10	3 dBm 5 dBm 10 dBm 20 dBm	= 2 mW = 3 mW = 10 mW = 100 mW	
-3 dB -10 dB -20 dB -30 dB	= 0.5 = 0.1 = 0.01 = 0.001	-3 dBm -10 dBm -30 dBm -60 dBm	= 0.5 mW = 100 μW = 1 μW = 1 nW	
	[dBm] + [dB] = [dBm]			
	[dBm/Hz] + [dB] = [dBm/Hz]			

[x] + [dB] = [x]

Complex numbers arithmetic!!!!
z = a + j · b ; j² = -1

Impedance Matching

Matching , from the point of view of power transmission

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_a
- For a particular load the power sent to the load is less than the maximum (mismatch) $P_L < P_a$
- The phenomenon is "as if" (model) some of the power is reflected P_r = P_a P_L
- The power is a scalar !

Lecture 3-4 Microwave Network Analysis

Scattering matrix – S

 V₂⁺ = 0 meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

Scattering matrix – S

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance Matching

Impedance matching with lumped elements (L Networks) Impedance Matching

The Smith Chart, reflection coefficient, impedance matching

Smith chart, r=1 and g=1

Matching, series reactance

$$z_{L} = r_{L} + j \cdot x_{L}$$
$$z_{in} = r_{L} + j \cdot (x_{L} + x_{1})$$
$$r_{in} = r_{L}$$

- Match can be obtained if and only if r_L = 1
- we compensate the reactive part of the load

 $j \cdot x_1 = -j \cdot x_L$

Matching, shunt susceptance

- Match can be obtained if and only if g_L = 1
- we compensate the reactive part of the load $j \cdot b_1 = -j \cdot b_L$

Matching with 2 reactive elements (L Networks)

Forbidden area for current network

Impedance Matching with Stubs Impedance Matching

Smith chart, r=1 and g=1

Single stub tuning

Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Case 1, Shunt Stub

Shunt stub

Matching, series line + shunt susceptance

Analytical solution, Γ, shunt stub

$$\cos(\varphi + 2\theta) = -|\Gamma_S|$$

$$\Theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_S|}{\sqrt{1 - |\Gamma_S|^2}}$$

 $|\Gamma_s| = 0.593; \quad \varphi = 46.85^\circ \quad \cos(\varphi + 2\theta) = -0.593 \Rightarrow (\varphi + 2\theta) = \pm 126.35^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(46.85^{\circ} + 2\theta) = +126.35^{\circ} \quad \theta = +39.7^{\circ} \quad \text{Im } y_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = -1.472$ $\theta_{sp} = \tan^{-1}(\text{Im } y_{s}) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

• "-" solution

$$(46.85^{\circ} + 2\theta) = -126.35^{\circ} \qquad \theta = -86.6^{\circ}(+180^{\circ}) \rightarrow \theta = 93.4^{\circ}$$

$$\operatorname{Im} y_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.472 \qquad \theta_{sp} = \tan^{-1}(\operatorname{Im} y_{s}) = 55.8^{\circ}$$

Analytical solution, **F**

$$(\varphi + 2\theta) = \begin{cases} +126.35^{\circ} \\ -126.35^{\circ} \end{cases} \theta = \begin{cases} 39.7^{\circ} \\ 93.4^{\circ} \end{cases} \operatorname{Im}[y_{s}(\theta)] = \begin{cases} -1.472 \\ +1.472 \end{cases} \theta_{sp} = \begin{cases} -55.8^{\circ} + 180^{\circ} = 124.2^{\circ} \\ +55.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Matching, series line + series reactance

Analytical solution, **Г**

$$\cos(\varphi + 2\theta) = |\Gamma_s|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_s = 0.555 \angle -29.92^{\circ}$ $|\Gamma_s| = 0.555; \quad \varphi = -29.92^{\circ} \qquad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^{\circ}$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $(-29.92^{\circ} + 2\theta) = +56.28^{\circ}$ $\theta = 43.1^{\circ}$ Im $z_s = \frac{+2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = +1.335$ $\theta_{ss} = -\cot^{-1}(\operatorname{Im} z_s) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ}$
 - "-" solution $(-29.92^{\circ}+2\theta) = -56.28^{\circ}$ $\theta = -13.2^{\circ}(+180^{\circ}) \rightarrow \theta = 166.8^{\circ}$ $\operatorname{Im} z_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1-|\Gamma_{s}|^{2}}} = -1.335$ $\theta_{ss} = -\cot^{-1}(\operatorname{Im} z_{s}) = 36.8^{\circ}$

Analytical solution, **F**

$$(\varphi + 2\theta) = \begin{cases} +56.28^{\circ} \\ -56.28^{\circ} \end{cases} \theta = \begin{cases} 43.1^{\circ} \\ 166.8^{\circ} \end{cases} \operatorname{Im}[z_{s}(\theta)] = \begin{cases} +1.335 \\ -1.335 \end{cases} \theta_{ss} = \begin{cases} -36.8^{\circ} + 180^{\circ} = 143.2^{\circ} \\ +36.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$l_{1} = \frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda = 0.120 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

Single stub tuning

- We choose one of the 8 possible solutions (series/shunt, oc./sc.), taking into account:
 - physical dimensions (area occupied on chip/board)
 - sensitivity of the match on length error ($\Delta\Gamma/\Delta E$, $\Delta\Gamma/\Delta I$)
 - convenient frequency behavior (bandwidth)

Single stub tuning

- We choose one of the 8 possible solutions (series/shunt, oc./sc.), taking into account :
 - physical realizability (in the line technology we use)

- Main disadvantage:
 - requires a variable length of line between the load and the stub
- Double stub tuning
- uses two tuning stubs in fixed positions (a fixed length of line between the stubs)

same load: 6o Ω series with 0.995 pF at 2GHz
 two possible solutions

two possible solutions

- Typically $d=\lambda/8$ or $d=3\lambda/8$
- Not possible for every load
 - unless we can add a specific length of line between the load and the first stub

Impedance Matching with Stubs

Microwave Amplifiers

Microwave Amplifiers

Microwave Integrated Circuits

- Charaterized with S parameters
- normalized at Zo (implicit 50Ω)
- Datasheets: S parameters for specific bias conditions

Datasheets

CEL

NE46100 / NE46134

NPN MEDIUM POWER MICROWAVE TRANSISTOR

FEATURES

- · HIGH DYNAMIC RANGE
- · LOW IM DISTORTION: -40 dBc
- HIGH OUTPUT POWER : 27.5 dBm at TYP
- · LOW NOISE: 1.5 dB TYP at 500 MHz
- · LOW COST

DESCRIPTION

The NE461 series of NPN silicon epitaxial bipolar transistors is designed for medium power applications requiring high dynamic range. This device exhibits an outstanding combination of high gain and low intermodulation distortion, as well as low noise figure. The NE461 series offers excellent performance and reliability at low cost through titanium, platinum, gold metallization system and direct nitride passivation of the surface of the chip. Devices are available in a low cost surface mount package (SOT-89) as well as in chip form.

ELECTRICAL CHARACTERISTICS (TA = 258C)

PART NUMBER EIAJ REGISTERED NUMBER PACKAGE OUTLINE					00 11P)		NE461 2SC45 34	34 36
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	ТҮР	MAX	MIN	ТҮР	MAX
fτ	Gain Bandwidth Product at VcE = 10 V, Ic = 100 mA	GHz	8 8	5.5			5.5	
NFMIN	Minimum Noise Figure ³ at VcE = 10 V, Ic = 50 mA, 500 MHz VcE = 10 V, Ic = 50 mA, 1 GHz	dB dB		1.5 2.0			1.5 2.0	
GL	Linear Gain, Vcc = 12.5 V, Ic = 100 mA, 2.0 GHz Vcc = 12.5 V, Ic = 100 mA, 1.0 GHz	dB dB		9.0	3		8.0	
IS21EI ²	Insertion Power Gain at 10 V, 50 mA, f = 1.0 GHz	dB		10.0		5.5	7.0	
hre	DC Current Gain ² at Vce = 10 V, Ic = 50 mA	-	40		200	40		200
Ісво	Collector Cutoff Current at VcB = 20 V, IE = 0 mA	ØA			5.0			5.0
IEBO	Emitter Cutoff Current at VEB = 2 V, Ic = 0 mA	ØA			5.0			5.0
P1dB	Output Power at 1 dB Compression, Vce = 12.5 V, Ic = 100 mA, 2.0 GHz Vce = 12.5 V, Ic = 100 mA, 1.0 GHz	dBm dBm	27.0				27.5	
IM3	Intermodulation Distortion. 10 V. 100 mA. F1 = 1.0 GHz. F2 = 0.99 GHz.							

Datasheets

NE46100

VCE = 5 V, IC = 50 mA _

FREQUENCY		11	S 21		S	S 12		S 22		MAG ²	
(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		(dB)	
100	0.778	-137	26.776	114	0.028	30	0.555	-102	0.16	29.8	
200	0.815	-159	14.407	100	0.035	29	0.434	-135	0.36	26.2	
500	0.826	-177	5.855	84	0.040	38	0.400	-162	0.75	21.7	
800	0.827	176	3.682	76	0.052	43	0.402	-169	0.91	18.5	
1000	0.826	173	2.963	71	0.058	47	0.405	-172	1.02	16.3	
1200	0.825	170	2.441	66	0.064	47	0.412	-174	1.08	14.0	
1400	0.820	167	2.111	61	0.069	47	0.413	-176	1.17	12.4	
1600	0.828	165	1.863	57	0.078	54	0.426	-177	1.15	11.4	
1800	0.827	162	1.671	53	0.087	50	0.432	-178	1.14	10.6	
2000	0.828	159	1.484	49	0.093	50	0.431	-180	1.17	9.5	
2500	0.822	153	1.218	39	0.11	48	0.462	177	1.18	7.8	
3000	0.818	148	1.010	30	0.135	46	0.490	174	1.16	6.3	
3500	0.824	142	0.876	21	0.147	44	0.507	170	1.16	5.3	
4000	0.812	137	0.762	13	0.168	38	0.535	167	1.14	4.3	
	- 400										
VCE = 5 V, IC	= 100 m/	4									
100	0.778	-144	27.669	111	0.027	35	0.523	-114	0.27	30.2	
200	0.820	-164	14.559	97	0.029	29	0.445	-144	0.42	27.0	
500	0.832	-179	5.885	84	0.035	38	0.435	-166	0.81	22.2	
800	0.833	175	3.691	76	0.048	45	0.435	-173	0.95	18.8	
1000	0.831	172	2.980	71	0.056	51	0.437	-176	1.05	16.0	
1200	0.836	169	2.464	67	0.061	52	0.432	-178	1.11	14.0	
1400	0.829	166	2.121	61	0.072	53	0.447	-180	1.12	12.6	
1600	0.831	164	1.867	58	0.080	54	0.445	179	1.14	11.4	

Datasheets

NE46100, NE46134

TYPICAL COMMON EMITTER SCATTERING PARAMETERS¹ (TA = 25°C)

Coordinates in Ohms Frequency in GHz VcE = 5 V, Ic = 50 mA

S₂P - Touchstone

Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
                       S12 S22
l f
      S11
              S21
IGH7 MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900 -15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600 -30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100 -45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600 -62.0
5.000 0.7400 -115.0 2.190 61.0 0.0990 7.0 0.4900 -80.0
6.000 0.6500 -142.0 2.110 36.0 0.1070 -10.0 0.4100 -98.0
     Fmin Gammaopt rn/50
! f
       dB MAG ANG -
! GHz
2.000 1.00 0.72 27 0.84
4.000 1.40 0.64 61 0.58
```

S parameters for transistors

 $\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} \qquad \Gamma_{S} = \frac{Z_{S} - Z_{0}}{Z_{S} + Z_{0}} \qquad \begin{bmatrix} V_{1}^{-} \\ V_{2}^{-} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} V_{1}^{+} \\ V_{2}^{+} \end{bmatrix}$

 $\Gamma_{L} = \frac{V_{2}^{+}}{V_{2}^{-}} \qquad \qquad V_{1}^{-} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot V_{2}^{+} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot \Gamma_{L} \cdot V_{2}^{-}$ $V_{2}^{-} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot V_{2}^{+} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-}$

 $V_1^- = S_{11} \cdot V_1^+ + S_{12} \cdot V_2^+ = S_{11} \cdot V_1^+ + S_{12} \cdot \Gamma_L \cdot V_2^ V_2^- = S_{21} \cdot V_1^+ + S_{22} \cdot V_2^+ = S_{21} \cdot V_1^+ + S_{22} \cdot \Gamma_L \cdot V_2^-$

Signal power

$$\begin{split} \Gamma_{in} &= \frac{V_{1}^{-}}{V_{1}^{+}} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1 - S_{22} \cdot \Gamma_{L}} & \Gamma_{in} = \frac{Z_{in} - Z_{0}}{Z_{in} + Z_{0}} \\ V_{1} &= \frac{V_{S} \cdot Z_{in}}{Z_{S} + Z_{in}} = V_{1}^{+} + V_{1}^{-} = V_{1}^{+} \cdot (1 + \Gamma_{in}) & V_{1}^{+} = \frac{V_{S}}{2} \frac{(1 - \Gamma_{S})}{(1 - \Gamma_{S} \cdot \Gamma_{in})} \\ \bullet & \mathbf{C3} & P_{in} = \frac{1}{2 \cdot Z_{0}} \cdot |V_{1}^{+}|^{2} \cdot (1 - |\Gamma_{in}|^{2}) & P_{L} = \frac{1}{2 \cdot Z_{0}} \cdot |V_{2}^{-}|^{2} \cdot (1 - |\Gamma_{L}|^{2}) \\ P_{in} &= \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}} (1 - |\Gamma_{in}|^{2}) \\ V_{2}^{-} &= S_{21} \cdot V_{1}^{+} + S_{22} \cdot V_{2}^{+} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-} & V_{2}^{-} = \frac{S_{21} \cdot V_{1}^{+}}{1 - S_{22} \cdot \Gamma_{L}} \\ P_{L} &= \frac{|V_{1}^{+}|^{2}}{2 \cdot Z_{0}} \cdot \frac{|S_{21}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} (1 - |\Gamma_{L}|^{2}) & P_{L} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|S_{21}|^{2} \cdot (1 - |\Gamma_{L}|^{2})}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}} \end{split}$$

Signal power

• Signal power

$$P_{in} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}} \left(1 - |\Gamma_{in}|^{2}\right)$$

$$P_{L} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|S_{21}|^{2} \cdot \left(1 - |\Gamma_{L}|^{2}\right)}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}}$$

Power available from the source

$$P_{av S} = P_{in} \Big|_{\Gamma_{in} = \Gamma_{S}^{*}} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{(1 - |\Gamma_{S}|^{2})}$$

Power available on the load (from the network)

$$P_{av L} = P_L \big|_{\Gamma_L = \Gamma_{out}^*} = \frac{|V_S|^2}{8 \cdot Z_0} \cdot \frac{|S_{21}|^2 \cdot |1 - \Gamma_S|^2}{|1 - S_{11} \cdot \Gamma_S|^2 \cdot (1 - |\Gamma_{out}|^2)}$$

Two-Port Power Gains

Power Gain

$$G = \frac{P_L}{P_{in}} = \frac{|S_{21}|^2 \cdot (1 - |\Gamma_L|^2)}{(1 - |\Gamma_{in}|^2) \cdot |1 - S_{22} \cdot \Gamma_L|^2} \qquad P_{in} = P_{in}(\Gamma_S, \Gamma_{in}(\Gamma_L), S)$$

$$P_L = P_L(\Gamma_S, \Gamma_{in}(\Gamma_L), S)$$

The actual power gain introduced by the amplifier is less important because a higher gain may be accompanied by a decrease in input power (power actually drained from the source)
We prefer to characterize the amplifier effect looking to the power actually delivered to the load in relation to the power available from the source (which is a constant)

Two-Port Power Gains

Available power gain

$$G_{A} = \frac{P_{av L}}{P_{av S}} = \frac{|S_{21}|^{2} \cdot (1 - |\Gamma_{S}|^{2})}{|1 - S_{22} \cdot \Gamma_{L}|^{2} \cdot (1 - |\Gamma_{out}|^{2})}$$
Transducer power gain

$$G_{T} = \frac{P_{L}}{P_{av S}} = \frac{|S_{21}|^{2} \cdot (1 - |\Gamma_{S}|^{2}) \cdot (1 - |\Gamma_{L}|^{2})}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2} \cdot |1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

$$\Gamma_{in} = \Gamma_{in} (\Gamma_L)$$

Unilateral transducer power gain

$$G_{TU} = |S_{21}|^{2} \cdot \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} \cdot \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

$$S_{12} \cong 0 \qquad \qquad \Gamma_{in} = S_{11}$$

Input and output can be treated independently

- For an amplifier two-port we are interested in:
 - stability
 - power gain
 - noise (sometimes small signals)
 - linearity (sometimes large signals)

Stability Microwave Amplifiers

For an amplifier two-port we are interested in:

- stability
- power gain
- noise (sometimes small signals)
- linearity (sometimes large signals)

L5 $\Gamma = \Gamma_r + j \cdot \Gamma_i$

$$Z_{in} \qquad \qquad \Gamma_{in} = \Gamma_r + j \cdot \Gamma_i$$

$$r_{L} = \frac{1 - \Gamma_{r}^{2} - \Gamma_{i}^{2}}{\left(1 - \Gamma_{r}\right)^{2} + \Gamma_{i}^{2}}$$

- instability
 - $\operatorname{Re}\{Z_{in}\} < 0 \iff 1 \Gamma_r^2 \Gamma_i^2 < 0 \qquad |\Gamma_{in}| > 1$
- stability, Z_{in}
 - conditions to be met by Γ_L to achieve (input) stability

<1

$$S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} < 1$$

similarly Z_{out}

 $|\Gamma_{in}|$

 conditions to be met by Γ_S to achieve (output) stability

$$|\Gamma_{in}| < 1$$
 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

 We can calculate conditions to be met by Γ_L to achieve stability

$$|\Gamma_{out}| < 1$$
 $S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S} < 1$

 We can calculate conditions to be met by Γ_s to achieve stability

$$|\Gamma_{in}| < 1$$
 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

The limit between stability/instability

$$|\Gamma_{in}| = 1$$
 $S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} = 1$

 $|S_{11} \cdot (1 - S_{22} \cdot \Gamma_L) + S_{12} \cdot S_{21} \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$

• determinant of the S matrix $\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$

$$|S_{11} - \Delta \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$$
$$|S_{11} - \Delta \cdot \Gamma_L|^2 = |1 - S_{22} \cdot \Gamma_L|^2$$

$$\begin{split} \left|S_{11} - \Delta \cdot \Gamma_{L}\right|^{2} &= \left|1 - S_{22} \cdot \Gamma_{L}\right|^{2} \\ & a \cdot a^{*} = \left|a\right| \cdot e^{j\theta} \cdot \left|a\right| \cdot e^{-j\theta} = \left|a\right|^{2} \\ & \left|a + b\right|^{2} = (a + b) \cdot (a + b)^{*} = (a + b) \cdot \left(a^{*} + b^{*}\right) = \left|a\right|^{2} + \left|b\right|^{2} + a^{*} \cdot b + a \cdot b^{*} \\ \left|S_{11}\right|^{2} + \left|\Delta\right|^{2} \cdot \left|\Gamma_{L}\right|^{2} - \left(\Delta \cdot \Gamma_{L} \cdot S_{11}^{*} + \Delta^{*} \cdot \Gamma_{L}^{*} \cdot S_{11}\right) = 1 + \left|S_{22}\right|^{2} \cdot \left|\Gamma_{L}\right|^{2} - \left(S_{22}^{*} \cdot \Gamma_{L}^{*} + S_{22} \cdot \Gamma_{L}\right) \\ \left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right) \cdot \Gamma_{L} \cdot \Gamma_{L}^{*} - \left(S_{22} - \Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L} - \left(S_{22}^{*} - \Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*} = \left|S_{11}\right|^{2} - 1 \\ \Gamma_{L} \cdot \Gamma_{L}^{*} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L} + \left(S_{22}^{*} - \Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} = \frac{\left|S_{11}\right|^{2} - 1}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} + \frac{\left|S_{22} - \Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right)^{2}} \\ \left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|^{2} = \frac{\left|S_{11}\right|^{2} - 1}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} + \frac{\left|S_{22} - \Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right)^{2}} \end{split}$$

$$\left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right| = \left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

$$\left|\Gamma_{L}-C_{L}\right|=R_{L}$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_L for the limit between stability and instability (|Γ_{in}| = 1)
- This circle is the output stability circle (Γ_L)

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right|}$$

Input stability circle (CSIN)

- Similarly $|\Gamma_{out}| = 1$ $S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S} = 1$
- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_s for the limit between stability and instability (|Γ_{out}| = 1)
- This circle is the input stability circle (Γ_s)

$$C_{S} = \frac{\left(S_{11} - \Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{S} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}}$$

- The output stability circle represents the locus of Γ_{L} for the limit between stability and instability ($|\Gamma_{in}| = 1$)
- The circle divides the complex planes in two areas, the inside and the outside of the circle
- The two areas will represent the locus of Γ_{L} for stability ($|\Gamma_{in}|<1$) / instability ($|\Gamma_{in}|>1$)

Two cases possible: (a) stable outside/ (b) stable inside

- Identification of the stability / instability regions
 - Center of the Smith Chart in Γ_L complex plane correspond to $\Gamma_L = o$
 - Input reflection coefficient

$$\Gamma_{in} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} \qquad \Gamma_{in} \Big|_{\Gamma_L = 0} = S_{11} \qquad \left| \Gamma_{in} \right|_{\Gamma_L = 0} = |S_{11}|$$

 A decision can be made based on [S11] value the position of the center of the Smith chart (origin of the complex plane) relative to the circle

Identification of the stability / instability regions

Output stability circle

- |S11| < 1 → the center of the Smith chart on which Γ_L is represented is a stable point, so it's placed in the stability region (most often situation)
- |S11| > 1 → the center of the Smith chart on which Γ_L is represented is a unstable point, so it's placed in the instability region
- Input stability circle
 - |S22| < 1 → the center of the Smith chart on which Γ_s is represented is a stable point, so it's placed in the stability region (most often situation)
 - |S22| > 1 → the center of the Smith chart on which Γ_s is represented is a unstable point, so it's placed in the instability region

Example

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°

S22 = 0.22 ∠146°

IS-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99

ghz s ma r 50

2.0 0.75 -126 6.306 90 0.088 23 0.26 -120 2.5 0.72 -145 5.438 75 0.095 15 0.25 -140 3.0 0.69 -162 4.762 62 0.102 7 0.23 -156 4.0 0.65 166 3.806 38 0.111 -8 0.22 174 5.0 0.64 139 3.165 16 0.119 -21 0.22 146 6.0 0.65 114 2.706 -5 0.125 -35 0.23 118 7.0 0.66 89 2.326 -27 0.129 -49 0.25 91 8.0 0.69 67 2.017 -47 0.133 -62 0.29 67 9.0 0.72 48 1.758 -66 0.135 -75 0.34 46 IFREQ Fopt GAMMA OPT RN/Zo IGHZ dB MAG ANG -2.0 0.19 0.71 66 0.09 2.5 0.23 0.65 83 0.07 3.0 0.29 0.59 102 0.06 4.0 0.42 0.51 138 0.03 5.0 0.54 0.45 174 0.03 6.0 0.67 0.42 -151 0.05 7.0 0.79 0.42 -118 0.10 8.0 0.92 0.45 -88 0.18 9.0 1.04 0.51 -63 0.30

10.0 1.16 0.61 -43 0.46
Example

• ATF-34143 ADS ADS at Vds=3V S(1,1) S(2,2) Id=20mA. freq (500.0MHz to 18.00GHz) freq (500.0MHz to 18.00GHz) ADS ADS S(2,1) S(1,2) -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -12 -10 10 12 -2 -8 -6 6 8

freq (500.0MHz to 18.00GHz)

freq (500.0MHz to 18.00GHz)

Solution + region identification

- S parameters
 - S11 = -0.483+0.42·j
 - S12 = 0.111-0.043·j
 - S21 = 3.042+0.872·j
 - S22 = -0.182+0.123 j
- |S22|<1
 |C₁|<R₁, 0∈CSOUT

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} = 3.931 - 0.897 \cdot j$$

$$C_{L} = 4.032$$

$$R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} = 4.891$$

- The center of the Smith chart is placed inside the output stability circle (o ∈ CSOUT) and is a stable point
 - the inside of the output stability circle stability region
 - the outside of the output stability circle instability region

Solution + region identification

- S parameters
 - S11 = -0.483+0.42·j
 - S12 = 0.111-0.043·j
 - S21 = 3.042+0.872·j
 - S22 = -0.182+0.123·j
- $|S_{11}| < 1$ |C_S| > R_S, 0∉CSIN

$$C_{S} = \frac{\left(S_{11} - \Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} = -1.871 - 1.265 \cdot j$$

$$\left|C_{S}\right| = 2.259$$

$$R_{S} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}\right|} = 1.325$$

- The center of the Smith chart is placed outside the input stability circle (o∉CSIN) and is a stable point
 - the outside of the input stability circle stability region
 - the inside of the input stability circle instability region

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$

High variations -> we change to z logarithmic scale
 Γ_{in}(Γ_L)

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$, $|\Gamma|=1$

• $|\Gamma| = 1 \rightarrow \log_{10} |\Gamma| = 0$, the intersection with the plane z = 0 is a circle

Contour map/lines

© 2011 Encyclopædia Britannica, Inc.

106°

108°

110°

114°

116° E

Contour lines of $\log_{10} |\Gamma_{in}|$

Contour lines of $\log_{10} |\Gamma_{out}|$

CSIN, CSOUT

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro